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Robust V&V and UQ are critical in building 
credible simulation capabilities

Theory Simulation

Verification

Model

Validation
Theory

Validation

UQ

Epistemic uncertainty

Data uncertainty

Data scarcity

Discretization/roundoff errors

Q: How to evaluate whether all 3 agree with each other?

Q: How to get all 3 to agree with each other?

Q: How to evaluate the model’s predictive capability?

Experiment



 Computer model = mathematical model + implementation

 Verification: ensure the implementation is correct

• Question: Does the solution of a model implementation accurately 

represent  the model solution for its intended use?

 Verification activities: (CS and Math, no physics)

• Software quality assurance: regression testing, …

• Code self-verification (e.g. dynamic consistency checks)

• Grid convergence studies (also time-stepping)

• Solution verification (roundoff error, algorithmic parameters)

• Code to code comparison

• Verification test suite; formal methods

• Bug tracking with Poisson processes

 Major question: how to measure coverage?

Rigorous verification should precede
everything else



UQ is critical in understanding the effects of 
uncertainties

Physics sub-models

Sub-model 

uncertainties

Sub-model coupling 

uncertainties

Uncertainties 

In outputs

Experiment + data with uncertainties

Statistics-based

model validation

- How about in the event

of data scarcity?

Validation: “The determination of the degree to which a model 

is an accurate representation of the real world from the 

perspective of the intended uses of the model.” – AIAA 1998



UQ activities that you may be interested in

 Calculate margin and uncertainties (e.g. QMU)

 Identify important parameters/set research priorities

(sensitivity analysis)

 Validate model against experimental data (validation)

 Calibrate model parameters to fit data (calibration)

 Explore parameter space for important features  

(conceptual validation/parameter study)

 Assess probability of failure in view of parameter 

uncertainties (reliability analysis)

 Inverse UQ, parameter estimation, …



A typical UQ Analysis

Problem specification (model, variables)

Characterize parameter/model uncertainties

Expert judgment  

diligence

Parameter Screening: stage I For nParams >> 100

Single effect analysis

Parameter Screening: stage II
For nParams ~ 100

e.g. use MOAT/GP/MARS

(multi-algorithmic)

calibration
Quantify uncertainty,

Sensitivity, reliability

Design optimization/

exploration

Response surface analysis
For expensive models ~10

(use MARS,ANN,SVM,GP)

Derive credible ranges

Shapes and forms
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A classical approach to calculate uncertainties: 
Monte Carlo and histogram

1. Create N random sample points in the uncertain parameter space 

2. Run the points through the function and gather the Y‟s

3. Compute basic statistical quantities: mean, std. dev.

4. Bin the Y‟s and create an output histogram



An example output distributionSample points in parameter space



Let‟s use an example to illustrate how to do 
uncertainty analysis: Bungee Jumping

 To increase excitement, would like the  

minimum height to be as small as possible but

stay alive.

 There are a few uncertainties

• the height of the platform       (40-60m)

• the mass of the person        (67-74 kg)

• the number of strands       (20-40)

 Objective: In view of uncertainties, assess the

risk of safe jumps

Model:

- k is the elastic constant of the strand

- g is gravity
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Bungee Jumping: we only need to set up 2

PSUADE user files: input file & run file

# PSUADE input file (psuade.in)
PSUADE
INPUT

dimension = 3
variable 1  H0     = 40  60
variable 2  M       = 67  74
variable 3 sigma = 20  40

END
OUTPUT

dimension = 1
variable 1  H

END 
METHOD

sampling = MC
num_samples = 1000

END 
BEGIN APPLICATION

driver = ./simulator
END
ANALYSIS

analyzer method = Moment
END
END

/* simulator : pseudocode */

read H0, M, sigma from input file

G = 9.8

K  = 1.5

H = H0 – (2*M*g)/(K*sigma);

Write H to output file



Running PSUADE and analyzing the results are 
automatic

[linux %] psuade psuade.in

****************************************************************************

*** Welcome to PSUADE (version 1.3)                                      ***

****************************************************************************

Psuade: creating interface to user driver

Psuade: running sample, nSamples = 1000

…….

…….

Psuade: jobs completed = 1000 (out of 1000)

………

*       Sample mean          =   1.7936e+01

*       Sample std dev       =   8.7403e+00                     M/U ~ 2

*       Sample skewness   =  -1.9569e-01

*       Sample kurtosis      =   2.5012e+00

--------------------------------------------------------------------------

Would you like to plot the output distribution? (y or n) y

Please enter the matlab file name: distribution.m

Output distribution plot is now in distribution.m.

[linux %] 



Bungee Jumping: probability distribution 

function shows uncertainty and also risk

Probability of fatal jumps ~ 5% (risk ~ 5%)



Does sample size matter?

[linux %] psuade psuade.in

****************************************************************************

*** Welcome to PSUADE (version 1.3)                                       ***

****************************************************************************

Psuade: creating interface to user driver

Psuade: running sample, nSamples = 1000 (1000)

…….

…….

Psuade: jobs completed = 1000 (out of 1000)

………

*       Sample mean          =   1.7936e+01   (1.7776e+01)

*       Sample std dev       =   8.7403e+00        

*       Sample skewness   =  -1.9569e-01

*       Sample kurtosis      =   2.5012e+00

--------------------------------------------------------------------------

Would you like to plot the output distribution? (y or n) n

[linux %] 

(MC 2nd time)

Slightly different mean



Does the sampling method matter?

100 Monte Carlo runs (N=100)          100 Monte Carlo runs (N=1000)

Distribution of the sample mean



Does the sampling method matter?

100 Monte Carlo runs               100 Latin hypercube runs

Distribution of the sample mean



What is Latin Hypercube?

 space-filling in any one dimension

 faster convergence than MC

• esp. for monotonic functions

 LHS(N, m, s) + noise

• N: sample size (5 here)

• m: number of parameters 

• s: number of symbols

• r = N/s: number of replications

 How to choose sample size?

• sampling refinement

Latin hypercube
(stratified in each dimensiion)



Stratification properties for Latin hypercube 
sampling 

Stratification in
any single 
dimension

For space-fillingness
- Maximize min dist
- OA-Latin hypercube
- Centroidal Voronoi

tessselation (CVT)



Sampling refinement with Latin Hypercube

Refinement

(2D example)

Numerical results• Objective: to eliminate the need to select an 

initial sample size for an analysis

• How to use it: e.g. for main effect analysis

• Refine: LH(N,m,s) LH(2N-r,m,2s-1)

• Iterate and analyze until convergence



What is full factorial design?

 space-filling in all dimensions

 sample size = sm

• s: number of levels 

• m: number of inputs

 can be randomized by small 

perturbations

 can resolve m-way interactions

 only suitable for small number

of inputs (expensive)



What is orthogonal array (OA)?

 4 tuple: OA(N, m, k, s), s=strength

 Use of OA: 2-way conditional variances

 OA can be refined similarly to LH
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Multi-dimensional stratification: orthogonal 
array-based LH

- Stratification in any
1 and 2 dimensions

- OA with strength 3 
stratifies in any 3 dim

- Factorial is an extreme
case of OA



What is fractional factorial design?
-1   -1   -1   -1   -1   -1

-1   -1   -1    1   -1    1

-1   -1    1   -1    1   -1

-1   -1    1    1    1    1

-1    1   -1   -1    1    1

-1    1   -1    1    1   -1

-1    1    1   -1   -1    1 

-1    1    1    1   -1   -1

1   -1   -1   -1    1    1

1   -1   -1    1    1   -1

1   -1    1   -1   -1    1

1   -1    1    1    -1   -1

1    1   -1   -1   -1   -1

1    1   -1    1   -1     1

1    1    1   -1    1    -1

1    1    1    1    1     1         

 Resolution III, IV or V

 2 levels  assume linearity for each input

 Resolution IV:

• for all main effects

• cannot compute 2-way interactions accurately

 Resolution V: 

• for all main effects and two-way interactions

• thus has more resolving power

• but larger sample size than Resolution IV

An example: 6 inputs, Resolution IV

• X5 = X1 X2 X3 

• main effect confounded with 3rd order effects

• X3 X4 = X5 X6 (2-way confounded)



Other sampling designs

 Quasi-Monte Carlo: LP-tau, Halton sequence, etc.

 Central composite designs (inscribed, circumscribed)

 OA-based Latin hypercube (more space-filling than LH)

 Plackett-Burman (screening design for linear problems)

 Box-Behnken (3 level, fit quadratic)

Morris screening design (screening for nonlinear problems)

 Fourier Amplitude Sampling Test (FAST): quantitative SA

Metis (space-filling, less restrictive than full factorial)



A quasi-random sequence (LPTAU)

Full factorial design (FACT) Latin hypercube (LH)

Monte Carlo (MC)

Examples of sampling methods



A quasi-random sequenceFull factorial design

Finite Difference Finite Element

Analogy of sampling methods with grid 

discretizations



What have we learned so far?

 Quantifying uncertainties accurately takes many runs

• e.g. for MC, converges as 1/sqrt(N)

 Latin hypercube sampling helps, but not sufficient if

• the simulation cost is high

• there are many uncertain parameters

Many sampling methods exist for different purposes

 How to speed up UQ analysis

• dimension reduction (parameter screeing)

• response surface analysis
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Variable selection methods are used to down-
select the large number of uncertain parameters

 Objective: identify a small subset of important parameters for further study

• research priorization (help us to zoom in on important physics)

• model reduction (eliminate irrelevant parameters)

 Desirable characteristics of variable selection (screening) methods

• model independent (can handle nonlinear and non-additive models)

• allow the exploration of parameters over wide ranges

 These desirable characteristics eliminate linear methods

• derivative-based methods, linear regression, correlation analysis

• Fractional factorial and Plackett-Burman designs 
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cross-variances of input (xj) and output(y)

Classical Sensitivity Analysis (Pearson/Spearman)

 Spearman Correlation Coefficient

• Replace each entry of Y with its rank and apply Pearson method

• More suitable for nonlinear problems (but monotonic)



Model-independent Variable Selection Methods

 The Morris screening method

• based on sampling the gradients

 The Delta test

• based on nearest-neighbor analysis

 The Sum-of-trees method

• belongs to the class of tree-based methods

MARS-based importance analysis

• based on analysis from spline interpolation



The Morris screening method

A

B

C

A‟ A”

B‟

B”

C‟C”

1. Start at a random point (A)
2. Create the next point by 

perturbing one input (A‟)
3. Create the next point by

perturbing another input (A‟‟)
 Repeat step 1-3 r times (B,C..)
 Form r gradients for each

input and compute modified
means and standard deviations

 Plot mean vs standard dev.
for each input  screening 

diagram



   
j

mjmjj

j
x

xxxxyxxxxxy
z






 ,,,,,,,, 2121

Gradient of response w.r.t the j-th input 

Vector of gradients: with m input parameters

 mr zzzZ ,,, 21 

Collection of gradient vectors (R paths or replications):

 RZZZ ,,, 21 

Study the statistics (mean and standard deviation) of 

How does the Morris screening method work? 
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Interpretation: Screening diagram is a distillation 
of the Morris screening data
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particular input parameter
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“effect” of that particular input on 
the outputs

based on R points

(R = # replicates)
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on absolute value of
the output

Large mean = “sensitive” parameter
Large  = non-linear relationship or  
inter-parameter interactions

Decision on 

how to cut

should be

decided by 

scientists



An Example: a soil-foundation-structure-
interaction model

Questions related to uncertainty quantification (UQ):

1. Characterize inter-story drift uncertainties due to parameter uncertainties

2. Rank the parameters in importance (sensitivity analysis SA)

Material parameters and uncertainties
(UCSD model)
OpenSees/1940 El Centro

Seismic
wave

Response:Interstory drift

- max roof drift/bldg height

- max story drift/story height

- max floor acceleration



Running Morris Analysis using PSUADE
[linux %] psuade

psuade> Load psData

psuade> moat

moat: Morris screening analysis

*********************** MOAT Analysis ***********************

Input   1 (mod. mean & std) =   1.2781e-02   2.9352e-03 

Input   2 (mod. mean & std) =   7.1482e-03   1.7959e-03 

Input   3 (mod. mean & std) =   7.5600e-06   1.5736e-05 

Input   4 (mod. mean & std) =   2.1727e-03   1.0429e-03 

Input   5 (mod. mean & std) =   0.0000e+00   0.0000e+00 

Input   6 (mod. mean & std) =   1.8366e-03   7.6315e-04 

Input   7 (mod. mean & std) =   0.0000e+00   0.0000e+00 

Input   8 (mod. mean & std) =   3.6514e-03   1.3754e-03 

Input   9 (mod. mean & std) =   1.8199e-02   7.2860e-03 

Input  10 (mod. mean & std) =   4.0640e-04   2.6256e-04 

Input  11 (mod. mean & std) =   2.4656e-04   2.5489e-04 

Input  12 (mod. mean & std) =   3.8643e-03   2.0851e-03 

Input  13 (mod. mean & std) =   5.0526e-03   4.8351e-03 

Input  14 (mod. mean & std) =   4.3793e-03   1.7473e-03 

Input  15 (mod. mean & std) =   3.6571e-03   3.1795e-03 

Input  16 (mod. mean & std) =   1.7720e-02   8.4490e-03 

Input  17 (mod. mean & std) =   1.6789e-02   1.7281e-02 

Input  18 (mod. mean & std) =   2.1844e-02   1.0673e-02 

Input  19 (mod. mean & std) =   2.6873e-02   2.3267e-02 

************************************************************



Morris screening results for the SFSI2D problem

1: CoverFC
2: CoverEC0
9: Steel 
17: Soil T3
19: Soil T4



The Gamma Test and Delta Test

 Assumption: if two points are close together in input space then their

outputs should be close in the output space. If the outputs are not

close  together, we consider this difference is because of noise.

 Assumption: the underlying input-output relationship is of the form

where e has zero mean and bounded variance.

 Let the set of data points be

 Let               denote the k-th nearest neighbor of 

 Let

  statistics can be calculated as y-intercept of the regression line for

 The theory says that
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An Enhanced Delta Test for Variable Subset 
Selection

 Again, let 

 Let the set of data points be

 Let the Delta metric be

 The original Delta test is: the best variable subset S* is such that

where              is the Delta metric restricted to the variable subset space S

 The improved Delta test consists of

• using additional neighbors (k=1,2,3)

• choosing instead the best 50 subsets and using them for scoring

• assessing the final choice using forward sweep
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Running Delta Test using PSUADE

[linux %] psuade

psuade> Load psData

psuade> delta_test

================================================

Current best solution for output 1:

0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1  = 1.273683e-04

0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1  = 1.584548e-04 (1 of 100)

…….

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1  = 6.067841e-05 (100 of 100)

*******************************************************

Final Selections (based on 3 neighbors) = 

Rank  1 => 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 : delta =  6.0678e-05

…….

-------------------------------------------------------------

Order of importance (based on 20 best configurations): 

(D)Rank    1 : input   19 (score = 100 )

(D)Rank    2 : input    9 (score = 100 )

(D)Rank    3 : input   18 (score = 100 )

(D)Rank    4 : input   17 (score = 100 )

(D)Rank    5 : input   16 (score = 100 )

(D)Rank    6 : input    1 (score = 49 )

(D)Rank    7 : input   10 (score = 44 )

(D)Rank    8 : input   11 (score = 24 )

…….

Order: 19, 9, 18,17, 16, 1, 10, 11, 15, 2 



Tree-based Methods

 Based on creating a binary tree (unbalanced)

 Criteria for splitting: use impurity function

• residual sum of squares

• ratios of means and variances of sub-trees

 Splitting criterion: maximum decrease in impurity

 Stopping criteria:

• minimum number of data points per terminal nodes

• residual sum of squares falls below a threshold

 Sum-of-trees

• use bootstrapped samples and average (*)

• use boosting and average

 Ranking criterion:

• total number of splittings (with scaling at each level) for each input

• use variance of the number of splittings as error bar



Running Delta Test using PSUADE

[linux %] psuade

psuade> Load psData

psuade> sot_sa

*************************************************************

* SumOfTrees screening rankings (with bootstrapping)

*************************************************************

*  Rank   1 : Input =  19 (score = 100.0)

*  Rank   2 : Input =  17 (score = 92.6)

*  Rank   3 : Input =   9 (score = 61.6)

*  Rank   4 : Input =  18 (score = 61.1)

*  Rank   5 : Input =  16 (score = 39.8)

*  Rank   6 : Input =   1 (score = 11.9)

*  Rank   7 : Input =  10 (score =  9.6)

*  Rank   8 : Input =   2 (score =  7.0)

*  Rank   9 : Input =  13 (score =  5.6)

*  Rank  10 : Input =   5 (score =  4.6)

*  Rank  11 : Input =   3 (score =  3.7)

*  Rank  12 : Input =   4 (score =  3.5)

*  Rank  13 : Input =   8 (score =  3.5)

*  Rank  14 : Input =  14 (score =  3.3)

*  Rank  15 : Input =  11 (score =  3.1)

……….

*************************************************************

psuade> 



Numerical Results (2D SFSI Problem)

Method Top 7 parameters

SPEA 17,19,18,9,16,2,14

Morris 19,18,9,16,17,1,2

MARS 19,17,18,9,16,1,2

Delta Test 9,17,19,16,18,1,13

SumOfTrees 19,17,18,9,16,1,2

Sample size used: MC with N=600
Variable 13: ranked by other methods as (8,8,8,9,13)
Variable 14: ranked by other method as (9,11,10,12,18)
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Response Surfaces

 response surfaces are representations of the model

output everywhere the parameter space

 Other names

• surrogate model

• (stochastic) emulator

 Basic ingredients of a response surface analysis

• a sample (input-output pairs, space-filling)

• a response surface fitting method

 in  (X)F̂F(X)Y



Response surfaces (surrogates, emulators,) are very 

useful for the UQ of multi-physics models

 Multi-physics models are generally expensive to evaluate 
(many CPU hours)

 Robust uncertainty quantification (forward/inverse 
uncertainty assessment, sensitivity analysis) needs many 
sample points

 Idea: use sampling and assumptions about the function f to 
construct an approximate mapping 

 Challenges

• Parameter space  large (>10)

• Near-singularities/discontinuities/noise

Definition: Evaluate                                                                         . 
Find             (hypothesis function space ) such that 

(some error measure) is minimized.    
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Response Surface Fitting Method

 Parametric: 

 linear regression, quadratic, cubic, quartic, etc.

 special polynomial: Legendre

 nonlinear regression functions

 Nonparametric:

• multivariate adaptive splines (MARS) + bootstrap aggr

• artificial neural network

• Gaussian process (GP, kriging, treed-GP)

• Support vector machines

• Sum-of-trees

• Many others: e.g. wavelet, …

 Selection depends on knowledge of the function and 

sample size (e.g. GP is very expensive)



How to create response surfaces?

1. Choose a sampling method (LP-tau, Metis, LH, etc.)

2. Run the simulator with the sample

3. Use response surface check to see goodness of fit

• examine training errors

• examine cross validation errors

4. If errors are not acceptable, add more points

5. Create a FF IV design to sample some corners

• to test the robustness against extrapolation

6. Use „rstest‟ to examine extrapolation errors

7. If good, add FF design and create new response surface



# PSUADE input file (psuade.in)
PSUADE
INPUT

dimension = 2
variable 1  X1     = 0  1
variable 2  X2     = 0  1

END
OUTPUT

dimension = 1
variable 1  Y

END 
METHOD

sampling = LPTAU
num_samples = 50

END 
BEGIN APPLICATION

driver = ./simulator
END
ANALYSIS
END
END

/* simulator : pseudocode */

read X1, X2from input file

Y = X1 + X2 * X2

Write Y to output file

How to create response surfaces: an example

2
21 xxY 



Generating response surface using PSUADE

[linux %] psuade psuade.in

….

[linux %] mv psuadeData psData

[linux %] psuade

psuade> load psData

psuade> rs2

Grid resolution ? (32 – 256) 128

Available response surface tools: 

0. MARS 

1. Linear regression 

2. Quadratic regression 

3. Cubic regression 

…….

Please enter your choice ? 0

matlabrs2.m is now available for response surface and contour plots

psuade> quit

[linux %]



Check response surface quality

[linux %] psuade

psuade> load psData

psuade> rscheck

Available response surface tools: 

0. MARS 

1. Linear regression 

…….

Please enter your choice ? 0

…….

RSFA: L  0: interpolation error on training set = 

L1n error = 4.869e-03 (unscaled), 8.005e-02(scaled)

Avg error  = -1.412e-08 (unscaled), 2.046e-02(scaled)

RMS error = 6.138e-03 (unscaled), 6.580e-01(scaled)

Max error = 2.207e-02 (unscaled, BASE=2.469e-02)

Max error = 1.900e+01 (  scaled, BASE=1.428e-04)

Based on 1024 training points (total=1024).

Distribution of interpolation error is in psuade_rsfa_err.m

Perform cross validation ? (y or n) y



Check response surface quality (cont)

Enter the number of groups to validate : (2 - 1024) 10

RSFA: number of CV groups = 10

RSFA: L  1:cross validation (CV) begins...

Random selection of leave-out groups ? (y or n) y

RSFA:: L  1:CV processes 1 out of 10.

…….

RSFA:: L  1:CV processes 2 out of 10.

…….

RSFA: final CV error  = 5.025e-03 (L1n unscaled)

RSFA: final CV error  = 2.142e-01 (L1n   scaled)

RSFA: final CV error  = 2.037e-01 (RMS unscaled)

RSFA: final CV error  = 7.498e+01 (RMS   scaled)

RSFA: final CV error  = 2.326e-02 (Max unscaled, BASE=1.448e+00)

RSFA: final CV error  = 4.952e+01 (Max   scaled, BASE=1.428e-04)

RSFA: L  1:cross validation (CV) completed.

CV error file is RSFA_CV_err.m (CV error for each point).

AnalysisManager: analysis error = 4.24e-04 <? 1.00e+00

psuade> quit



 Linear regression:

 Weighted approach gives

 Compute sum of squares statistics 

 To quantify how close the regression model matches the data, we use

 The standard deviation of the i-th coefficient is the square root of the 

(i,i)-th entry of cov(B).

 Higher order polynomials can be constructed similarly.
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Regression Analysis



 Function  Y = (X – 0.5) * (X – 0.5),   0 <= X <= 1

 Sample size = 21, use equally spaced points

 Left: linear splines;  right: cubic splines

 Knots at 0.35, 0.5, 0.65

Adaptive Regression Spline Analysis



 Function  Y = (X – 0.5) * (X – 0.5),   0 <= X <= 1

 Sample size = 31, use equally spaced points

 Left: linear splines;  right: cubic splines

 Knots at 0.2333, 0.3667, 0.5, 0.6333, 0.7667

Adaptive Regression Spline Analysis



 Function  Y = (X – 0.5) * (X – 0.5),   0 <= X <= 1

 Sample size = 31, use equally spaced points

 Red: true curve, Blue: Gaussian process, Green: sum-of-trees

Other response surface interpolation schemes



Choice of error measures

 R-square or adjusted R-squares (polynomial regression)

 Taylor expansion (truncation error)

 Convergence of the function mean (classical learning)

 Chi-square (training error, cannot account for generalization error)

 Holdout data set (training and test set)

 k-fold cross validation (check generalization error)

 Statistics on point-wise standard deviation for Gaussian process

 Extrapolation analysis: Gower distance

Definition: Evaluate                                                                         . 
Find             (hypothesis function space ) such that 

(some error measure) is minimized.    
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K-fold Cross validation

 Given a sample of N points

 Divide the sample into k roughly same size groups

 For i = 1 to k

• take out group i and use the rest to build a response surface

• use the response surface to predict the outputs of group i

• compute the sum of squares of the output discrepancies

 Add up all k sum of squares, divide by N and assess sufficiency

 Advantage: all N sample points are used in the response surfaces

 Provide some checking for extrapolation accuracy

 Exhaustive cross validation: using k = N, N/2, N/3, …

 Ideal error statistics: approximately Gaussian with zero mean and 
small standard deviation
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What is sensitivity analysis (SA)?

 Sensitivity Analysis is the study of how the 

variation in the output of a model can be 

apportioned, qualitatively or quantitatively, to 

different sources of variation.

 It is thus the natural next step after the output 

uncertainties have been quantified.

 It can be classified into 3 groups:

• Local sensitivity analysis

• Screening (qualitative SA, covered previously)

• Global sensitivity analysis



Recall theBungee Jump example: use local SA to 
identify important parameters
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Use local sensitivity analysis at the nominal point (50, 70.5, 30)

Conclusion: order of importance = MH  0

)/()2(0 kMgHh 

This conclusion may not be valid if the model is highly nonlinear



Global Sensitivity Analysis is more suitable for 
multi-physics applications

 Local Sensitivity Analysis

• Computing partial derivatives of output w.r.t 

input parameters over a small range

 Global Sensitivity Analysis

• Including the influence of scale and shape 

(nonlinearities, wide range)

• Evaluating the individual effect while all other 

factors are varying (complex interactions)



Classical Sensitivity Analysis

 Pearson Correlation Coefficient

 Linear correlation coefficient assumes linear relationships between 

inputs and outputs

 Spearman Coefficient
 It gives a crude measure of nonlinear relationships

 Nonlinear regression analysis
 It requires the assumption of a specific functional form

 Also, for large number of inputs, these methods 

require a large number of calculations to get 

accurate results.

 Variance decomposition-based methods



The foundation of variance decomposition is the 

Sobol‟ property
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 Any function can be decomposed into terms of increasing 

dimensionality, i.e. (such that the mean of each term is 0.)

 Then, the total variance is the sum of the variances of the

individual terms.

 This holds true only for functions with uncorrelated inputs

(the joint probability distribution function is 0)
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We need to define a few sensitivity measures

 Sensitivity index for input I (main effect or 1st order)

 Sensitivity index for input i and j (second order) 

 Total sensitivity

index for input i
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Another useful property from statistics
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 Variance decomposition based on conditioning input i

 Sensitivity index for input i 

Variance of conditional expectation
(conditioned on input i)

Remaining variability due to
other inputs
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A pictorial view of variance decomposition

 Given a scatter plot of output with respect to input i 

)]|([ iXYEV )]|([ XYVE
Variance of the means (the red line)
The variance of the trend shows the
importance of X.

Each column shows the distribution
of Y given a fixed X. Calculate the
variances and take the mean of all X‟s



Similarly, we can derive interaction and total 

sensitivity indices

 interaction study (need different sampling methods)
• use replicated orthogonal array design

 total sensitivity indices
• with correlated inputs, these are better measures

• can use Fourier Amplitude Sampling Test (FAST) design
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Variance Decomposition: An Example

604.12 

 Given: 

where                          and uniformly distributed

Basic statistics:

mean                  

variance
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Apply Sobol‟ decomposition to the example

1. Rewrite: (so that the mean of each term is 0.)

2. Calculate the variance of each term:

3. hence, 

Main effect of  x1 = 25/48

Main effect of  x2 = 49/48

interaction (1,2) = 1/16

total sensitivity of x1 = 25/48 + 1/16 = 7/12
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How to compute

them in practice?



Replicated hypercube offers an efficient way to 

compute 1st order sensitivity indices

Replication 1

Replication 2

Replication 3

Latin hypercube
(stratified in each dimensiion)

For each input, there are 3 data per level



How to compute the sensitivity indices?
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The same sample can be used

for all inputs.



# PSUADE input file (psuade.in)
PSUADE
INPUT

dimension = 2
variable 1  X1     = 0  1
variable 2  X2     = 0  1

END
OUTPUT

dimension = 1
variable 1  Y

END 
METHOD

sampling = LH
num_samples = 5000
num_replications = 100

END 
BEGIN APPLICATION

driver = ./simulator
END
ANALYSIS

analyzer method = MainEffect
END
END

/* simulator : pseudocode */

read X1, X2 from input file

Y = X1 + 2 * X2 + 3 * X1 * X2

Write Y to output file

How to compute first order sensitivity indices: an 
example

PSUADE run: running sample, nSamples = 5000 

=====> MainEffectAnalyzer: mean               =   

2.2473e+00

=====> MainEffectAnalyzer: standard deviation =   

1.2946e+00

****************************************

* Main Effect Analysis

------------------------------------------------------------

* total number of samples =       5000                     

* number of Inputs            =          2                     

------- McKay's correlation ratio   --------------

INPUT  1 =  3.28e-01 (raw =  5.50e-01)  (true~0.52)

INPUT  2 =  6.36e-01 (raw =  1.07e+00) (true~1.02)

Total VCE =  9.64e-01



# PSUADE input file (psuade.in)
PSUADE
INPUT

dimension = 2
variable 1  X1     = 0  1
variable 2  X2     = 0  1

END
OUTPUT

dimension = 1
variable 1  Y

END 
METHOD

sampling = FAST
num_samples = 57

END 
BEGIN APPLICATION

driver = ./simulator
END
ANALYSIS

analyzer method = FAST
END
END

/* simulator : pseudocode */

read X1, X2 from input file

Y = X1 + 2 * X2 + 3 * X1 * X2

Write Y to output file

How to compute total sensitivity indices: an 
example

====================================

* Fourier Amplitude Sampling Test coefficients

-------------------------------------------------------------

* M = 4

* Input    1 =   3.211396e-01 (true ~ 0.3636)

* Input    2 =   6.305783e-01 (true ~ 0.6753)

* Sum of FAST coefficients =   9.517179e-01

* FAST variance   =   1.624837e+00

====================================



Variance decomposition: Another example

 Given:                                        with 5 inputs             

 Use replicated LH with N=2000, and R=50

 main effect (first order sensitivity indices):

input 1:  0.005

input 2:  0.09

input 3:  0.41

input 4:  0.22

input 5:  0.22

total = 0.95

 total VCE < 1 due to interactions

54
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The scatter plots shows importance and 
interactions

 the trends of the means show importance and nonlinearities

 the uneven envelopes show interaction (does not show how)



What PSUADE offers for sensitivity analysis

MOAT design and analysis (qualitative)

 Plackett-Burman design for linear problems (qualitative)

 Delta Test, Sum-of-trees test, MARS test (qualitative)

 Correlation analysis for linear problems

 Ranked correlation analysis for monotonic problems

Main effect based on replicated Latin hypercube

 Interaction effect based on replicated orthogonal array

 Total effect based on the FAST method

Main and interaction effects in non-hypercube space

Main effect and interaction and total sensitivity analysis

 Several other methods: random balanced design (RBD)

 Various graphical analysis tools
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Why numerical optimization?

Model calibration – finding the best match

1000 runs varying all 7 parameters (where „*‟ are experimental data)



Why numerical optimization?

 Optimal design – finding the best configuration

X



Model calibration – 2 approaches

 Based on deterministic optimization

 formulate an objective function (e.g. least-squares)

 define independent variables and bounds

 define any inequality constraints

 run optimization algorithms

 Stochastic optimization (e.g. Bayesian)

 given data and standard deviation (assume normal)

 define a likelihood function

 define independent variables and distributions

 run Markov Chain Monte Carlo algorithm

 For efficiency reason, response surface is preferred.



Model calibration – deterministic

 run optimization algorithm to identify candidates

 if outputs have uncertainties, perform sensitivity

analysis in the neighborhood of the candidates

 formulate an objective function (e.g. least-squares)

 define independent variables and bounds
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Model calibration – deterministic II

 Formulate objective function

 Use the optimal solution, perform an uncertainty analysis

by varying the output data.

An example: 

4 data points (X,Y): (0,0), (1/3,2/9), (2/3,5/9), (1,1)

 Fit the data into the quadratic form

2X B  X a  Y 
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Model calibration – deterministic III

# PSUADE input file (psuade.in)
PSUADE
INPUT

dimension = 2
variable 1  X1     = 0  1
variable 2  X2     = 0  1

END
OUTPUT

dimension = 1
variable 1  Y

END 
METHOD

sampling = MC  (random guess)
num_samples = 1

END 
BEGIN APPLICATION

driver = ./simulator
opt_driver = ./simulator

END
ANALYSIS

optimization method = cobyla
optimization max_feval = 10000
optimization tolerance = 1.0e-6

END

PSUADE run: jobs completed = 1(out of 1)
***********************************************
PSUADE OPTIMIZATION 1 (1) : 

starting X(     1) =   4.04772655e-01
starting X(     2) =   5.06000343e-01
starting Y =   1.26259981e-02
Cobyla number of function evaluations = 568
optimum  X(     1) =   5.00007850e-01
optimum  X(     2) =   4.99991126e-01

optimum Y =   5.37008696e-12
***********************************************
PSUADE Optimization Results.
PSUADE Optimization : local optima 1 (1) -

X     1 =   5.00007850e-01
X     2 =   4.99991126e-01

Ymin =   5.37008696e-12
###############################################
PSUADE OPTIMIZATION : CURRENT GLOBAL 
MINIMUM -

X     1 =   5.00007850e-01
X     2 =   4.99991126e-01

Ymin =   5.37008696e-12
###############################################
PSUADE Optimization : desired minimum found.



Bayesian calibration

 Formulate likelihood function

 Run Markov Chain Monte Carlo to get the posterior

distribution (not just the optimum)

An example: 

4 data points (X,Y): (0,0), (1/3,2/9), (2/3,5/9), (1,1)

 Fit the data into the quadratic form

2X B  X a  Y 

1]uniform[0,  b and a
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Model calibration – deterministic III

# PSUADE input file
PSUADE
INPUT

dimension = 2
variable 1  X1     = 0  1
variable 2  X2     = 0  1

END
OUTPUT

dimension = 1
variable 1  Y

END 
METHOD

sampling = LH
num_samples = 200

END 
BEGIN APPLICATION

driver = ./simulator
opt_driver = ./simulator

END
END

[linux %] psuade
psuade> load psRS
psuade> rsmcmc
rsmcmc: perform MCMC on response surfaces
MCMC Burn-in nSamples (default) = 10000
MCMC maximum nSamples (default) = 10000
MCMC number of bins   (default) = 20
************************************************
Enter the standard deviation (> 0) : 0.01
************************************************
MCMC INFO: creating response surfaces.
MCMC Phase 1: burn in 
10%  20%  30%  40%  50%  60%  70%  80%  90% 100% 
MCMC Phase 2: create posterior (10.)
10%  20%  30%  40%  50%  60%  70%  80%  90% 100%
MCMC: input   1 statistics (mean,stdev) = 5.100836e-01 3.210077e-03
MCMC: input   2 statistics (mean,stdev) = 5.091668e-01 4.284858e-03
MCMC: input   1  at peak = 5.125624e-01
MCMC: input   2  at peak = 5.125125e-01
MCMC: output   1 at peak = -3.114816e-03
MCMC: likelihood at peak = 1.411236e+07
MCMC: final matlabmcmc.m file has been created.
MCMC: matlabmcmc2.m file (2-input analysis) is ready.
psuade> quit
[linux %]

Input script for creating 

response surface
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 What is validation?

• “The determination of the degree to which a model is an 

accurate representation of the real world from the 

perspective of the intended uses of the model.” – AIAA 1998

 Hierarchical validation (bottom-up)

• Unit (one physics, e.g. hydrodynamics)

• Subsystem (coupled physics, e.g. hydrodynamics+materials)

• Full system

 Validation methods

• Conceptual validation (qualitative)

• Data validation (quantitative)

Rigorous validation increases credibility
of the model
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 Conceptual model validation

• Determine that the model representation is reasonable for the intended 

application of the model (e.g. laminar/turbulent flow)

• Determine that the model responses are consistent with the physical 

phenomena (e.g. linearity, interactions)

• Sensitivity analysis and design exploration methods can aid in 

conceptual validation

 Data validation (need uncertainty/sensitivity analyses)

• Use historical data and new experiments to ensure the model is 

sufficiently accurate for the intended application of the model: 

• Need validation metrics: physical quantities + distance metrics

• Apply at various levels: unit, subsystem, system, benchmarks

• Acceptance: hypothesis tests or statistical tests

 Documentation (the procedure and results)

• To communicate the progress of validation

Aspects of Model Validation



 Scalar quantities (with probabilistic distribution from UQ)

• comparison of 2 probability distribution functions

• Parametric or nonparametric: e.g. chi-squared statistics, 

Kolmogorov Smirnov statistics, Bhattacharyya distance, …

• Should select appropriate measures for a given application

 Function (vector) quantities (time series)

• Apply transforms with respect to some basis functions

• e.g. wavelet basis, orthogonal polynomials, PCA

• Gather statistics and apply scalar metrics

 Images (2D or 3D)

• Apply transforms to condense the information

• e.g. scan line transforms, surface to volume ratio, shapelet

• Gather statistics and apply scalar metrics

Validation Data and Metrics



A Methodology for computing validation metric

 Decide on a diagnostic variable and compile the data set ({Di, Di})

 To create output distribution for the computer model

 Identify the set of uncertain parameters and their ranges

 If too many parameters, do a down-select to get a few parameters

 Create response surface for the subset of parameters

 Sampling (small) on the response surface to compute ({Yi, Yi})

 Use chi-square formula to compute distance metric

 Use hypothesis testing to determine acceptance

 Next: use deterministic/Bayesian optimization to calibrate parameters    


 




m

1i
2
Yi

2
Di

2
ii

ii
ζζ

)D(Y
}){Y},Dist({D



Distance and Metric Space

A distance function on a given set M is a function d:  x R, 

  is a m-dimensional probability space

 R is a real number

 that satisfies the following conditions (Let X, Y be both in ):

 D(X,Y) >= 0, and D(X,Y) = 0 if and only if X=Y. 

 It is symmetric: D(X,Y) = D(Y,X).

 It satisfies the triangle inequality: D(X,Z) <= D(X,Y) + D(Y,Z).

An example: Euclidean distance between 2 points in 
2/1
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Distance Metric can either be Parametric or Non-
parametric

 Non-parametric: m-D probability distribution (or histogram if discrete)

 correlation built in to the probability distribution

 metrics: Chernoff/Bhattacharyya, c2, Kolmogorov-Smirnov

Minkowski/Chebyshev distances may be used

 Other metrics: earth mover distance (EMD), JD

 Parametric (known form of distributions, e.g. Gaussian)

  reduced to a mean (m-D) vector and a covariance matrix

 The distance can be classified further as with or without correlation

 No correlation: e.g. c2, Minkowski, Euclidean

With correlation: Hotelling, Mahalanobis (similar to Cornwall‟s)



Parametric Validation for multiple outputs with 
no correlation

1a.  No calculational uncertainty 

 one calculation per data

 each red line is a single point

1b.  Calculational uncertainty assessed 

 Some number of calculations to 

compute model uncertainty
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These are parametric distance metrics



Parametric Validation for multiple outputs with 
correlation

1. No calculational uncertainties

 1 calculation per device (Yi, Di : mean vectors, SD i: covariance matrix)

 Use Mahalanobis metric

2. Parametric calculational uncertainties

 many (but still a small number of) calculations

 compare 2 multi-dimensional distributions

 Caveat: Data covariance matrix may not be readily available

can assume data and calculations have same correlation)
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Nonparametric Validation (skewed/multi-modal)

1. Construct probability distribution for data (p(D): probability density)

2. Use many runs to construct model probability distribution (p(M))

 To Compare 2 multi-dimensional distributions, use Bhattacharyya 

distance (Y is a single or multiple output space), or

 Kolmogorov-Smirnov distance (P : cumulative density function)

3. Use this metric with the methodology to measure and guide progress
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A Problem Solving environment for 
Uncertainty Analysis and Design 

Exploration



PSUADE has 3 major components

1. PSUADE creates the sampling design

2. PSUADE manages the simulation resource allocations

3. PSUADE analyzes the results

sample 

generator
PSUADE

Input file

execution 

environment
user driver

analysis

toolbox

For short jobs, the entire process can be fully automated.



Example 1: creating user program

 The bungee jumping example

)/()2(0 kMgHH 

]60,40[0 H

]74,67[M

]40,20[

5.1,8.9  kg

 run: psuade

 psuade> gendriver

 use C program (option 1)

 give a name (e.g. simulator.c)

 psuade> quit

 add to the C program the above equation

 compile to create executable: simulator



Example 1: creating PSUADE input file

 run psuade again (no argument)

 psuade> geninputfile

…. give a name (e.g. psuade.in)

 answer all questions

 number of outputs=1, MC, sample size=1000

 driver program = simulator

maximum number of jobs=1, run time=0

 deterministic, do not generate data file

 quit after the file has been created

 examine your psuade input file



PSUADE: Input and output sections

PSUADE
INPUT

dimension = 3
variable 1  X1     =  40.0   60.0
variable 2  X2     =  67.0   74.0
variable 3  X3     =  20.0   40.0

#    PDF  1  U
#    PDF  2  N    0.0   1.0
#    PDF  3  L    5.0   5.0
#    PDF  4  T    0.0   1.0
END
OUTPUT

dimension = 1
variable 1 Y

END
.
.
END



PSUADE: Method section

PSUADE

.

.

METHOD

#    sampling = FACT

#    sampling = FF5

#    sampling = CCC4

#    sampling = MOAT

sampling = LH

num_samples = 1000

num_replications = 50

END 

.

.

END



PSUADE: Application section

PSUADE
.
.
APPLICATION

driver = ./simulator
#    driver = ./psuadeData
#    opt_driver = NONE

max_parallel_jobs = 4
launch_interval = 10

#    launch_only
#    gen_inputfile_only
#    nondeterministic
#    max_job_wait_time = 10000
#    save_frequency = 1
END
.
.
END



PSUADE: Analysis section

PSUADE
.
.
ANALYSIS

analyzer method = Moment
analyzer method = MOAT
analyzer method = MainEffect
analyzer output_id = 1
analyzer rstype = MARS

#    analyzer rstype = linear
#    analyzer rstype = quadratic
#    analyzer rstype = ANN
#    optimization method = cobyla
#    other optimization parameters
END
.
.
END



Example 1: running and analyzing

 run: psuade psuade.in

When it is done, do: mv psuadeData psuadeSave

 launch psuade again

 psuade> load psuadeSave

 psuade> printlevel 4

 psuade> ua (examine the moments)

… respond „y‟ to creating an pdf file

… give a name (e.g. pdf.m)

 quit psuade

 launch matlab/display to display distribution



Example 1: visualizing

 run: psuade 

 psuade> load psuadeSave

 psuade> rs2

…. Select input 1 and 3 and nominal for others

…. Answer „no‟ to setting lower/upper bounds 

 psuade> quit

 launch matlab/scilab and run: matlabrs2

 you can also try out rs3 to visualize all 3 inputs



Example 1: using python driver script

 run: psuade 

 psuade> gendriver

…. use option 2

…. give a file name (e.g. simulator.py)

…. „no‟ to dependency, no appl/batch/support files

…. 3 inputs: H0, M, S; 1 output

 psuade> quit

 edit the simulator.py file to add the equation

 run: chmod 755 simulator.py

 uncomment the last few lines to clear workdir.x

modify the driver in the psuade.in to simulator.py

 run: psuade psuade.in



Example 2: Morris screening

 Use the Morris test problem: 20 parameters, first 10 are 

important, the first  6 have interactions, 7 nonlinear

 The user driver can be copied from

/usr/gapps/psuade/Examples/Morris20 (simulator.c)

 compile simulator.c to simulator (use –lm)

 create psuade input file

 now run: psuade psuade.in 

 create screening diagram

 observe: large means for parameter 1 to 10

 observe: large standard deviations for parameter 1 to 7

 launch matlab/scilab and plot the screening diagram



Example 3: Quantitative sensitivity analysis

 Use again the bungee jumping example 

 Grab the simulator: simulator.c

 Compile simulator.c to simulator (use –lm)

 Create a psuade.in file for main effect analysis

(Latin hypercube, num_samples=5000, num_replications=100)

 Run: psuade psuade.in

 Observe: the correlation ratios for the 3 inputs

 launch matlab/scilab and plot the scatter plots



PSUADE: Interactive mode

[linux %] psuade 

****************************************************************************

*** Welcome to PSUADE (version 2.0)                                       ***

****************************************************************************

PSUADE - A Problem Solving Environment for 

Uncertainty Analysis and Design Exploration

psuade> load datafile

psuade> help

Help topics:

io       (file read/write operations)

uqsa  (UQ/SA functions)

misc  (miscellaneous functions)

psuade> splot

matlabsp.m is now available for scatter plot.

psuade> list

psuade> me

…

psuade> max

…

psuade> ua

… 



Example 4: numerical optimization

 Obtain an optimization example simulator 

psuade/Examples/SandOpt/simulator.c

 Examine the simulator and see what it is doing

 Compile simulator.c to simulator

 Create a psuade input file for creating response surface

 Run the simulator and use psuade and matlab/scilab to view

the response surface 

 Create a psuade.in file for optimization (use cobyla

with random initial guess: MC)

 Run the input file several times to observe the minimum.



Example 5: Bayesian optimization

 Obtain an optimization example simulator from

psuade/Examples/MCMC/simulator.c

 Examine the simulator and discuss what it is doing

 Compile simulator.c to simulator

 Create a psuade input file for creating response surface

 Run psuade in interactive mode

 Load the response surface data file and run: rsmcmc

 figure out what standard deviation to use

 Use matlab/scilab to view XXXmcmc.m and XXXmcmc2.m

 Try running with different standard deviation in simulator

and mcmc runs


